Antisense RNA strategies for metabolic engineering of Clostridium acetobutylicum.
نویسندگان
چکیده
We examined the effectiveness of antisense RNA (as RNA) strategies for metabolic engineering of Clostridium acetobutylicum. Strain ATCC 824(pRD4) was developed to produce a 102-nucleotide asRNA with 87% complementarity to the butyrate kinase (BK) gene. Strain ATCC 824(pRD4) exhibited 85 to 90% lower BK and acetate kinase specific activities than the control strain. Strain ATCC 824(pRD4) also exhibited 45 to 50% lower phosphotransbutyrylase (PTB) and phosphotransacetylase specific activities than the control strain. This strain exhibited earlier induction of solventogenesis, which resulted in 50 and 35% higher final concentrations of acetone and butanol, respectively, than the concentrations in the control. Strain ATCC 824(pRD1) was developed to putatively produce a 698-nucleotide asRNA with 96% complementarity to the PTB gene. Strain ATCC 824(pRD1) exhibited 70 and 80% lower PTB and BK activities, respectively, than the control exhibited. It also exhibited 300% higher levels of a lactate dehydrogenase activity than the control exhibited. The growth yields of ATCC 824(pRD1) were 28% less than the growth yields of the control. While the levels of acids were not affected in ATCC 824(pRD1) fermentations, the acetone and butanol concentrations were 96 and 75% lower, respectively, than the concentrations in the control fermentations. The lower level of solvent production by ATCC 824(pRD1) was compensated for by approximately 100-fold higher levels of lactate production. The lack of any significant impact on butyrate formation fluxes by the lower PTB and BK levels suggests that butyrate formation fluxes are not controlled by the levels of the butyrate formation enzymes.
منابع مشابه
Differential expression of a Clostridium acetobutylicum antisense RNA: implications for regulation of glutamine synthetase.
The Clostridium acetobutylicum glutamine synthetase (GS) DNA region is characterized by a downstream promoter, P3, oriented toward the glnA gene, which controls the transcription of an RNA complementary to the start of the glnA mRNA. Expression of the predicted 43-base antisense RNA was demonstrated in C. acetobutylicum and Escherichia coli cells containing the cloned glnA DNA. Antisense RNA tr...
متن کاملAldehyde-alcohol dehydrogenase and/or thiolase overexpression coupled with CoA transferase downregulation lead to higher alcohol titers and selectivity in Clostridium acetobutylicum fermentations.
Metabolic engineering (ME) of Clostridium acetobutylicum has led to increased solvent (butanol, acetone, and ethanol) production and solvent tolerance, thus demonstrating that further efforts have the potential to create strains of industrial importance. With recently developed ME tools, it is now possible to combine genetic modifications and thus implement more advanced ME strategies. We have ...
متن کاملA Quantitative System-Scale Characterization of the Metabolism of Clostridium acetobutylicum
UNLABELLED Engineering industrial microorganisms for ambitious applications, for example, the production of second-generation biofuels such as butanol, is impeded by a lack of knowledge of primary metabolism and its regulation. A quantitative system-scale analysis was applied to the biofuel-producing bacterium Clostridium acetobutylicum, a microorganism used for the industrial production of sol...
متن کاملMetabolic engineering of Clostridium acetobutylicum: recent advances to improve butanol production.
The biosynthesis of the solvents 1-butanol and acetone is restricted to species of the genus Clostridium, a diverse group of Gram-positive, endospore forming anaerobes comprising toxin-producing strains as well as terrestrial non-pathogenic species of biotechnological impact. Among solventogenic clostridia, Clostridium acetobutylicum represents the model organism and general but yet important g...
متن کاملDevelopment of an anhydrotetracycline-inducible gene expression system for solvent-producing Clostridium acetobutylicum: A useful tool for strain engineering.
Clostridium acetobutylicum is an important solvent (acetone-butanol-ethanol) producing bacterium. However, a stringent, effective, and convenient-to-use inducible gene expression system that can be used for regulating the gene expression strength in C. acetobutylicum is currently not available. Here, we report an anhydrotetracycline-inducible gene expression system for solvent-producing bacteri...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Applied and environmental microbiology
دوره 65 3 شماره
صفحات -
تاریخ انتشار 1999